

 ARL-MR-1070 ● JAN 2023

Methods for Using Anaconda on Personally
Identifiable Information (PII)‒Restricted
Computers

by Dale Shires, Michael Frauenhoffer, and John Vines

Approved for public release: distribution unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the

Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official

endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

 ARL-MR-1070 ● JAN 2023

Methods for Using Anaconda on Personally
Identifiable Information (PII)‒Restricted

Computers

Dale Shires, Michael Frauenhoffer, and John Vines
DEVCOM Army Research Laboratory

Approved for public release: distribution unlimited.

ii

REPORT DOCUMENTATION PAGE Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the

data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the

burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.

Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently

valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

January 2023

2. REPORT TYPE

Memorandum Report

3. DATES COVERED (From - To)

11 August‒11 October 2022

4. TITLE AND SUBTITLE

Methods for Using Anaconda on Personally Identifiable Information

(PII)‒Restricted Computers

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Dale Shires, Michael Frauenhoffer, and John Vines

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

DEVCOM Army Research Laboratory

ATTN: FCDD-RLA-DB

Aberdeen Proving Ground, MD 21005

8. PERFORMING ORGANIZATION REPORT NUMBER

ARL-MR-1070

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release: distribution unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

The data science, deep learning, and machine learning communities commonly utilize prebuilt and pretested libraries to

perform complex operations. Quite often software is written in Python, and libraries are managed with the Anaconda system

that allows specific versions of libraries to be integrated with Python easily and quickly. This paradigm, however, gets a bit

complicated when the computer system to be used for either model development or inferencing or both is placed behind

Internet firewalls and restrictions due to the demands of Personally Identifiable Information processing. All is not lost,

however, when using Anaconda and Python in such a trying environment. We discuss two different approaches that solve this

problem and give examples of these approaches in action: Singularity containers and Conda-Pack.

15. SUBJECT TERMS

Network, Cyber, and Computational Sciences; Anaconda; Python; machine learning; PII; Singularity; containers

16. SECURITY CLASSIFICATION OF:
17. LIMITATION
 OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

33

19a. NAME OF RESPONSIBLE PERSON

Dale Shires
a. REPORT

Unclassified

b. ABSTRACT

Unclassified

c. THIS PAGE

Unclassified

19b. TELEPHONE NUMBER (Include area code)

(410) 278-5006
 Standard Form 298 (Rev. 8/98)

 Prescribed by ANSI Std. Z39.18

iii

Contents

List of Figures iv

1. Introduction 1

2. Anaconda and Containers 2

2.1 Initial Required Configurations 3

2.2 Downloading and Installing Anaconda 7

2.3 Iris Classification Test Case 7

2.4 Creating, Testing, and Porting a Singularity Container 8

2.5 Possible Issues and Remedies with PSF 9

3. Anaconda and Conda-Pack 10

4. Conclusion 11

5. References 12

Appendix A. Output of “conda list” 13

Appendix B. Python Script: iris.py 17

Appendix C. Output of iris.py on Source Computer 20

Appendix D. Output of iris.py on Destination Computer 22

Appendix E. Output of iris.py when Using Conda-Pack 24

List of Symbols, Abbreviations, and Acronyms 26

Distribution List 27

iv

List of Figures

Fig. 1 An example YAML file .. 1

Fig. 2 PuTTY configuration for source and destination tunnel ports 4

Fig. 3 Connection settings dialog box in Firefox .. 5

Fig. 4 oVirt login screen .. 5

Fig. 5 Summary page for the VM “test” ... 6

Fig. 6 Cockpit interface for the VM .. 7

1

1. Introduction

Anaconda is a Python/R data science distribution and collection of over 7,500 open-

source packages that include a package and environment manager (Anaconda

2022). Anaconda can be downloaded and installed in the user’s directory space on

a computer system and does not necessarily require system administrator or “root”

privileges to install. Anaconda can take a fair amount of disk space, so another

related option is Miniconda, which only includes the Python interpreter and the

package manager and thus reduces overall space requirements. Either software is

platform-agnostic; you can install it on numerous operating systems to include

Windows, Mac OS, and Linux. Anaconda environments can be created by way of

command-line arguments or through the use of a YAML (YAML Ain’t Markup

Language) configuration file (often seen with a .yml extension) used to define all

of the packages to install in the environment. An example YAML file is shown in

Fig. 1.

Fig. 1 An example YAML file

Once an Anaconda environment is created and activated, software developers can

use the system to install specific versions of many machine learning (ML)

packages, such as Pandas, NumPy, and PyTorch to name a few. Thereafter, these

ML packages can easily be imported into Python software (code) to greatly simplify

and speed the integration of approaches into customized software. Besides ML,

2

Anaconda supports a myriad of capabilities including neural networks, predictive

analysis, and data visualization (anaconda.com 2022 [Oct 11]).

The software that Anaconda manages can be sourced from the Internet, hosted

locally, or be from a file that exists on the local host. However, most often software

is pulled from active Internet connections, and lacking this connection greatly

complicates this process for obvious reasons. The authors recently encountered

such a situation. One of the computer systems housed at the US Army Combat

Capabilities Development Command (DEVCOM) Army Research Laboratory

(ARL) was recently cleared to store and process personally identifiable information

(PII), but as part of the process, Internet access was greatly curtailed. However,

there are approaches to dealing with this problem, and these mitigation efforts are

the focus of this report.

We discuss two ways to use Anaconda on systems with limited Internet

connectivity. The first uses a concept of containers. Containers are useful for

packaging all required software within itself to allow for installation and execution

on varying system architectures. If the container software is supported on the

development and target systems, the container can execute even if the development

system differs from the target and deployed system.

The second method uses a concept of packing all the required software housed in

an Anaconda environment into a library and then porting that library to a system

with limited connectivity. This method only works when the development and

target systems are based on similar architectures and operating systems.

For each of these approaches, we will assume that the Anaconda system has been

installed in the user’s directory. The methods to install “conda” (short for

Anaconda) vary based on the underlying operating system and are covered in more

detail on the Anaconda website (Anaconda 2022 [Oct 3]). Commands and prompts

are usually listed in the Consolas font with the “$” character as shell prompt.

2. Anaconda and Containers

There are numerous container runtimes (or engines) available today, to include

Singularity and Podman among others. Determining which container system to use

depends on a number of factors including functionality and ease-of-use for large-

scale software deployment. We were looking mainly for a methodology to package

and distribute Anaconda, so our criteria really came down to what was “easiest”

and currently supported at the DOD Supercomputing Resource Center (DSRC). For

these simple reasons, we chose to use Singularity. Like many container systems,

Singularity requires a user to have root, or superuser, privileges to be most effective

3

during the build. To get around this problem, we utilized the Persistent Services

Framework (PSF) running at the ARL DSRC (2021).

PSF is currently running on the system “Centennial” at the ARL DSRC. Once a

user applies for access to PSF through the standard user-support system and is

approved, an account is created on PSF, and the user can enjoy the ability to act as

root while in the PSF environment. There are numerous configurations to address

to get the overall system to function properly and there are many steps. We

enumerate these in the following. In all cases we used Firefox web browser

v. 102.3.0.

2.1 Initial Required Configurations

1) Acquire krb5 tickets. Use the High Performance Computing (HPC) Kerberos

application to acquire login credentials and tickets.

2) Use putty to log into centennial15, which is the node where the PSF system is

running. Also, putty must be configured properly for this approach to work. The

first step is to configure the source and destination ports in the Secure Shell (SSH)

Tunnels configuration. In the PuTTY configuration area, we chose to enter the

value 5678 in the source port, and the destination we chose was localhost:7890.

Once you enter those values in the appropriate fields, click the “Add” button. The

window should appear as shown in Fig. 2. Proceed to log into the system on login

node centennial15.

4

Fig. 2 PuTTY configuration for source and destination tunnel ports

3) Start a web browser. We chose to use the Firefox web browser for this test

case. Update the connection settings by selecting the hamburger menu (or

icon), select “Settings,” then select “Network Settings.” To match the

settings we used in PuTTY, select the “Manual proxy configuration” option,

and for SOCKS Host enter “localhost” with port number 5678. The radio

button SOCKS v5 should be selected, and the option “Proxy DNS when

using SOCKS v5” should also be enabled. The window should appear as

shown in Fig. 3.

5

Fig. 3 Connection settings dialog box in Firefox

4) Log into the oVirt virtual machine (VM) manager at

https://r6i4n0.ib0.arlu.arl.hpc.mil:8443/. You will need to supply your

username and password created at the time of your PSF account creation.

The oVirt interface will let you create, suspend, connect, and more to VMs

in the PSF system. The login screen is shown in Fig. 4.

Fig. 4 oVirt login screen

6

5) Create a VM with standard default options. Here we created a VM called

“test.” When you click on the VM, the web page will display the summary

state of the VM as shown in Fig. 5.

Fig. 5 Summary page for the VM “test”

6) Connect to the VM through a web browser. It is possible for the user to enter

a terminal window via the console from the oVirt status page, but there is a

Cockpit (https://cockpit-project.org/) version that has an enhanced look and

feel that we chose to use for the remainder of this example. To use this, first

determine the IP address for the VM from the Details section of the VM

status page. From Fig. 6 we can see that the IP address is 10.159.23.232. To

connect to the Cockpit interface, go to port 9090 by typing

https://10.159.23.232:9090 in the address bar and hitting return. This will

bring up the Cockpit interface as shown in Fig. 6.

7

Fig. 6 Cockpit interface for the VM

7) Go into the terminal for this VM by selecting the “Terminal” tab in the

Cockpit interface. Installing Anaconda and creating the Singularity

container will be done through this terminal window.

2.2 Downloading and Installing Anaconda

Anaconda, or conda, can be installed for a variety of operating systems from the

download page (Anaconda 2022 [Oct 3]). We are using systems at the ARL DSRC

that use a mix of operating systems. Once conda is installed, the user proceeds by

creating an environment, activating it, and then installing any required libraries into

the environment. For example, suppose someone wants to create a new

environment called “my_env” with the most recent version of Pandas (a data

analysis library). From a system with Internet access, the following three

commands would be entered:

1) $ conda create --name my_env
2) $ conda activate my_env
3) $ conda install pandas

2.3 Iris Classification Test Case

For a test case, we wanted a relatively robust example that uses several Anaconda

packages. The iris flower classification dataset provides this requirement, and there

is a step-by-step tutorial online on how to build and test several models

(machinelearningmastery.com 2020). We created an Anaconda environment called

8

“my_env.” The libraries installed in the environment are listed using the “conda

list” command and are shown in Appendix A ‒ Output of “conda list.” The Python

source code is listed in Appendix B ‒ iris.py, and the output of the software when

executed natively on centennial is shown in Appendix C ‒ Output of iris.py.

2.4 Creating, Testing, and Porting a Singularity Container

Using Anaconda inside of a container can be tricky. The first time an Anaconda

environment is used, it must be initialized for the operating system in use, which in

turn must be restarted for Anaconda to take effect. This rebooting step causes

problems for Singularity containers. We discovered a good solution to this problem

after quite a bit of searching online and by experimenting (csc-training.github.io

2022).

The first step is to export the working Anaconda environment to a YML file. From

the operating system prompt, this is done by “conda env export >

environment.yml”. Next, create a Singularity definition file (in this case called

iris.def), the contents of which appear as follows:

BootStrap: docker
From: continuumio/miniconda3

%help

 This is a container with conda environments and all materials required to run the
 Iris deep learning models.

%files
 environment.yml
 iris.csv
 iris.py

%environment

%post
 ENV_NAME=$(head -1 environment.yml | cut -d ' ' -f2)
 echo ". /opt/conda/etc/profile.d/conda.sh" >> $SINGULARITY_ENVIRONMENT
 echo "conda activate $ENV_NAME" >> $SINGULARITY_ENVIRONMENT

 . /opt/conda/etc/profile.d/conda.sh
 conda env create -f environment.yml -p /opt/conda/envs/$ENV_NAME
 conda clean --all
 chmod 775 iris.csv
 chmod 775 iris.py

%runscript
 echo "Starting container runscript..."
 exec python /iris.py

Now this definition file, along with all the other files that are required to run the iris

models, are placed in the same directory. (In this example we are using Singularity

v. 3.8.7-1.el8.) It is not uncommon to run into issues regarding file and directory

size limits when building containers, as they can become quite large. For instance,

just using default path settings when building containers, we would often start to

get errors that the build failed. Tracing back the reason revealed issues with size

limits in our directory structure.

9

This can be corrected by using two Singularity environment variables:

SINGULARITY_TMPDIR and SINGULARITY_CACHEDIR. Since the /home

directory had plenty of available room, this directory can be specified for the build.

Assuming a user named “joesmith” (for example), issue the following command to

build the singularity container:

$ sudo SINGULARITY_TMPDIR=/home/joesmith/build/tmp
SINGULARITY_CACHEDIR=/home/joesmith/build/cache singularity build iris.sif iris.def

This will build the file iris.sif, where sif stands for Singularity Image Format. Note

that building a container with several conda packages can take some time to

complete.

We transferred this file to the system with PII storage that has limited Internet

connectivity with an identical distribution of Singularity (v. 3.8.7-1.el8). Since

there is a runscript defined in the iris.def build file, it is possible to change the file

to executable (by issuing a chmod +x iris.sif command) and run it directly

from the shell. We did this, and the output is listed in Appendix D on the destination

computer. There is no randomization in the script, so the outputs of the two files do

match, and the versions of the software modules loaded also match since they are

self-contained within the container.

Note that is possible within the destination computer to now also enter a Singularity

shell environment that will allow a user to write Python code and import those

modules within the container, such as Pandas and NumPy. To do this, one needs to

execute the command

$ singularity shell iris.sif.

If other Anaconda modules are required, they will need to be installed on the source

computer with a rebuilt container once again moved to the destination machine.

2.5 Possible Issues and Remedies with PSF

There is a lot of flexibility in the PSF environment; however, there are also many

parameters and settings that might need to be adjusted due to things like the Defense

Information Systems Agency Security Technical Implementation Guides, for

instance. We list some of the possible items to look out for here:

• It is best to use the dnf command when installing software in PSF. Using

dnf works with various security filters to allow the software to install

properly. For example, to install Singularity the user would issue the

command dnf install singularity. This command will update the whitelist

of allowed commands.

10

• The file /etc/fstab in PSF might need to be modified to allow for execution

privileges on various file systems. For example, if “noexec” is set on a file

system, this will prevent code from executing directly from the media.

• If SELinux is active, it might interfere with some software installs or

executions.

In those situations where there appears to be strange or hard-to-follow errors, it is

best to be cautious and discuss the issue with a system administrator.

3. Anaconda and Conda-Pack

Conda-Pack is a utility that can be used when the development and target computers

are of the same architecture type (Conda-Pack 2022). The most common use case

is when the development computer has Python and Anaconda installed but the

destination computer does not. This method requires a lot less work than the

Singularity version and should be used whenever possible to simplify things.

The user must be connected to a terminal on the development computer where

Anaconda is installed. This terminal could be the same as that described in Section

2 or simply a Linux terminal on the development computer. Downloading and

installing Anaconda proceeds as described in Section 2.2. Conda-Pack should be

installed in the root conda environment; that is, prior to issuing any conda activate

commands. If an environment is currently active, conda deactivate should

be done before Conda-Pack is installed.

Following the previous example, assume we have an environment called “my_env”

that has all of the required Anaconda software to execute the iris.py file. The user

issues the command conda pack -n my_env from the base environment as

follows:

$ (base) conda pack -n my_env
Collecting packages...
Packing environment at '/home/joesmith/anaconda3/envs/my_env' to 'my_env.tar.gz'
[##] | 100% Completed | 1min 10.0s

This creates the my_env.tar.gz file that is then ported by the user to the

destination/target computer. The environment is unpacked into a new directory by

issuing the following commands:

$ mkdir -p my_env
$ tar -xzf my_env.tar.gz -C my_env

Since we are only packing the environment, any other files that are required by the

software, for instance in this case the iris.csv and iris.py files, also need to be moved

11

to the target computer. To mimic the Anaconda environment, we entered the

following command:

$ source my_env/bin/activate

Then we ran the iris.py Python code with the output given in Appendix E when

using Conda-Pack. Note that the code generates the same results as other versions

listed. To deactivate the environment and remove it from your path, enter the

following command:

$ source my_env/bin/deactivate

4. Conclusion

The ability to build on prior work and bring in already-built software libraries and

routines greatly simplifies the life of a data scientist. Processing datasets that store

PII data can be difficult, however, since computer systems may be behind firewalls

and other protections that limit the ability to actively download required libraries

that data scientists use often. There are at least two ways to deal with this problem,

as discussed in this report. We hope that this discussion fast-tracks the use of

Anaconda and its data science and ML tools in difficult processing situations such

as those encountered when working with PII data.

12

5. References

anaconda.com. Anaconda [accessed 2022 Oct 3]. www.anaconda.com.

anaconda.com. Anaconda use-cases [accessed 2022 Oct 11].

https://www.anaconda.com/use-cases.

[ARL DSRC]. ARL DOD Supercomputing Resource Center. New capability:

persistent services framework. In: ARL DSRC spring 2021 newsletter.

https://arl.hpc.mil/news/newsletter/ARL_DSRC_Newsletter_Spring_21.pdf.

conda.github.io. Conda-Pack [accessed 2022 Oct 5]. https://conda.github.io/conda-

pack/.

csc-training.github.io. Extra exercise: replicating a conda environment in a

container [accessed 2022 Oct 4]. https://csc-training.github.io/csc-env-

eff/hands-on/singularity/singularity_extra_replicating-conda.html.

machinelearningmastery.com. Your first machine learning project in Python step-

by-step [accessed 2020 Aug 19]. https://machine learning mastery.com

/machine-learning-in-python-step-by-step/.

https://conda.github.io/conda-pack/
https://conda.github.io/conda-pack/
https://machine/

13

Appendix A. Output of “conda list”

14

Name Version Build Channel

_libgcc_mutex 0.1 main defaults

_openmp_mutex 5.1 1_gnu defaults

_tflow_select 2.3.0 mkl defaults

abseil-cpp 20211102.0 hd4dd3e8_0 defaults

absl-py 0.15.0 pyhd3eb1b0_0 defaults

aiohttp 3.8.1 py310h7f8727e_1 defaults

aiosignal 1.2.0 pyhd3eb1b0_0 defaults

astunparse 1.6.3 py_0 defaults

async-timeout 4.0.1 pyhd3eb1b0_0 defaults

attrs 21.4.0 pyhd3eb1b0_0 defaults

blas 1.0 mkl defaults

blinker 1.4 py310h06a4308_0 defaults

bottleneck 1.3.5 py310ha9d4c09_0 defaults

brotli 1.0.9 h5eee18b_7 defaults

brotli-bin 1.0.9 h5eee18b_7 defaults

brotlipy 0.7.0 py310h7f8727e_1002 defaults

bzip2 1.0.8 h7b6447c_0 defaults

c-ares 1.18.1 h7f8727e_0 defaults

ca-certificates 2022.07.19 h06a4308_0 defaults

cachetools 4.2.2 pyhd3eb1b0_0 defaults

certifi 2022.6.15 py310h06a4308_0 defaults

cffi 1.15.1 py310h74dc2b5_0 defaults

charset-normalizer 2.0.4 pyhd3eb1b0_0 defaults

clang-14 14.0.6 default_hc1a23ef_0 defaults

click 8.0.4 py310h06a4308_0 defaults

cryptography 37.0.1 py310h9ce1e76_0 defaults

cycler 0.11.0 pyhd3eb1b0_0 defaults

dataclasses 0.8 pyh6d0b6a4_7 defaults

dbus 1.13.18 hb2f20db_0 defaults

expat 2.4.4 h295c915_0 defaults

fftw 3.3.9 h27cfd23_1 defaults

flatbuffers 2.0.0 h2531618_0 defaults

fontconfig 2.13.1 h6c09931_0 defaults

fonttools 4.25.0 pyhd3eb1b0_0 defaults

freetype 2.11.0 h70c0345_0 defaults

frozenlist 1.2.0 py310h7f8727e_1 defaults

gast 0.5.3 pyhd3eb1b0_0 defaults

giflib 5.2.1 h7b6447c_0 defaults

glib 2.69.1 h4ff587b_1 defaults

google-auth 2.6.0 pyhd3eb1b0_0 defaults

google-auth-oauthlib 0.4.4 pyhd3eb1b0_0 defaults

google-pasta 0.2.0 pyhd3eb1b0_0 defaults

grpc-cpp 1.46.1 h33aed49_0 defaults

grpcio 1.42.0 py310hce63b2e_0 defaults

gst-plugins-base 1.14.0 h8213a91_2 defaults

gstreamer 1.14.0 h28cd5cc_2 defaults

h5py 3.7.0 py310he06866b_0 defaults

hdf5 1.10.6 h3ffc7dd_1 defaults

icu 58.2 he6710b0_3 defaults

idna 3.3 pyhd3eb1b0_0 defaults

importlib-metadata 4.11.3 py310h06a4308_0 defaults

intel-openmp 2021.4.0 h06a4308_3561 defaults

joblib 1.1.0 pyhd3eb1b0_0 defaults

jpeg 9e h7f8727e_0 defaults

keras 2.8.0 py310h06a4308_0 defaults

keras-preprocessing 1.1.2 pyhd3eb1b0_0 defaults

kiwisolver 1.4.2 py310h295c915_0 defaults

krb5 1.19.2 hac12032_0 defaults

lcms2 2.12 h3be6417_0 defaults

ld_impl_linux-64 2.38 h1181459_1 defaults

lerc 3.0 h295c915_0 defaults

libbrotlicommon 1.0.9 h5eee18b_7 defaults

libbrotlidec 1.0.9 h5eee18b_7 defaults

libbrotlienc 1.0.9 h5eee18b_7 defaults

libclang 10.0.1 default_hb85057a_2 defaults

libclang-cpp14 14.0.6 default_hc1a23ef_0 defaults

libcurl 7.84.0 h91b91d3_0 defaults

libdeflate 1.8 h7f8727e_5 defaults

libedit 3.1.20210910 h7f8727e_0 defaults

libev 4.33 h7f8727e_1 defaults

15

libevent 2.1.12 h8f2d780_0 defaults

libffi 3.3 he6710b0_2 defaults

libgcc-ng 11.2.0 h1234567_1 defaults

libgfortran-ng 11.2.0 h00389a5_1 defaults

libgfortran5 11.2.0 h1234567_1 defaults

libgomp 11.2.0 h1234567_1 defaults

libllvm10 10.0.1 hbcb73fb_5 defaults

libllvm14 14.0.6 hef93074_0 defaults

libnghttp2 1.46.0 hce63b2e_0 defaults

libpng 1.6.37 hbc83047_0 defaults

libpq 12.9 h16c4e8d_3 defaults

libprotobuf 3.20.1 h4ff587b_0 defaults

libssh2 1.10.0 h8f2d780_0 defaults

libstdcxx-ng 11.2.0 h1234567_1 defaults

libtiff 4.4.0 hecacb30_0 defaults

libuuid 1.0.3 h7f8727e_2 defaults

libwebp 1.2.2 h55f646e_0 defaults

libwebp-base 1.2.2 h7f8727e_0 defaults

libxcb 1.15 h7f8727e_0 defaults

libxkbcommon 1.0.1 hfa300c1_0 defaults

libxml2 2.9.14 h74e7548_0 defaults

libxslt 1.1.35 h4e12654_0 defaults

lz4-c 1.9.3 h295c915_1 defaults

markdown 3.3.4 py310h06a4308_0 defaults

matplotlib 3.5.2 py310h06a4308_0 defaults

matplotlib-base 3.5.2 py310hf590b9c_0 defaults

mkl 2021.4.0 h06a4308_640 defaults

mkl-service 2.4.0 py310h7f8727e_0 defaults

mkl_fft 1.3.1 py310hd6ae3a3_0 defaults

mkl_random 1.2.2 py310h00e6091_0 defaults

multidict 5.2.0 py310h5eee18b_3 defaults

munkres 1.1.4 py_0 defaults

ncurses 6.3 h5eee18b_3 defaults

nltk 3.7 pyhd3eb1b0_0 defaults

nspr 4.33 h295c915_0 defaults

nss 3.74 h0370c37_0 defaults

numexpr 2.8.3 py310hcea2de6_0 defaults

numpy 1.22.3 py310hfa59a62_0 defaults

numpy-base 1.22.3 py310h9585f30_0 defaults

oauthlib 3.2.0 pyhd3eb1b0_1 defaults

openssl 1.1.1q h7f8727e_0 defaults

opt_einsum 3.3.0 pyhd3eb1b0_1 defaults

packaging 21.3 pyhd3eb1b0_0 defaults

pandas 1.4.3 py310h6a678d5_0 defaults

pcre 8.45 h295c915_0 defaults

pillow 9.2.0 py310hace64e9_1 defaults

pip 22.1.2 py310h06a4308_0 defaults

ply 3.11 py310h06a4308_0 defaults

protobuf 3.20.1 py310h295c915_0 defaults

pyasn1 0.4.8 pyhd3eb1b0_0 defaults

pyasn1-modules 0.2.8 py_0 defaults

pycparser 2.21 pyhd3eb1b0_0 defaults

pyjwt 2.4.0 py310h06a4308_0 defaults

pyopenssl 22.0.0 pyhd3eb1b0_0 defaults

pyparsing 3.0.9 py310h06a4308_0 defaults

pyqt 5.15.7 py310h6a678d5_1 defaults

pyqt5-sip 12.11.0 pypi_0 pypi

pysocks 1.7.1 py310h06a4308_0 defaults

python 3.10.4 h12debd9_0 defaults

python-dateutil 2.8.2 pyhd3eb1b0_0 defaults

python-flatbuffers 2.0 pyhd3eb1b0_0 defaults

pytz 2022.1 py310h06a4308_0 defaults

pyyaml 6.0 pypi_0 pypi

qt-main 5.15.2 h327a75a_7 defaults

qt-webengine 5.15.9 hd2b0992_4 defaults

qtwebkit 5.212 h4eab89a_4 defaults

re2 2022.04.01 h295c915_0 defaults

readline 8.1.2 h7f8727e_1 defaults

regex 2022.7.9 py310h5eee18b_0 defaults

requests 2.28.1 py310h06a4308_0 defaults

requests-oauthlib 1.3.0 py_0 defaults

16

rsa 4.7.2 pyhd3eb1b0_1 defaults

scikit-learn 1.1.1 py310h6a678d5_0 defaults

scipy 1.7.3 py310h1794996_2 defaults

setuptools 63.4.1 py310h06a4308_0 defaults

sip 6.6.2 py310h6a678d5_0 defaults

six 1.16.0 pyhd3eb1b0_1 defaults

snappy 1.1.9 h295c915_0 defaults

sqlite 3.39.2 h5082296_0 defaults

tensorboard 2.8.0 py310h06a4308_0 defaults

tensorboard-data-server 0.6.0 py310hca6d32c_0 defaults

tensorboard-plugin-wit 1.8.1 py310h06a4308_0 defaults

tensorflow 2.8.2 mkl_py310hd2b8f8c_0 defaults

tensorflow-base 2.8.2 mkl_py310hf890080_0 defaults

tensorflow-estimator 2.8.0 py310h2f386ee_0 defaults

termcolor 1.1.0 py310h06a4308_1 defaults

threadpoolctl 2.2.0 pyh0d69192_0 defaults

tk 8.6.12 h1ccaba5_0 defaults

toml 0.10.2 pyhd3eb1b0_0 defaults

tornado 6.2 py310h5eee18b_0 defaults

tqdm 4.64.0 py310h06a4308_0 defaults

typing-extensions 4.3.0 py310h06a4308_0 defaults

typing_extensions 4.3.0 py310h06a4308_0 defaults

tzdata 2022a hda174b7_0 defaults

urllib3 1.26.11 py310h06a4308_0 defaults

werkzeug 2.0.3 pyhd3eb1b0_0 defaults

wheel 0.37.1 pyhd3eb1b0_0 defaults

wrapt 1.14.1 py310h5eee18b_0 defaults

xz 5.2.5 h7f8727e_1 defaults

yaml 0.2.5 h7b6447c_0 defaults

yarl 1.8.1 py310h5eee18b_0 defaults

zipp 3.8.0 py310h06a4308_0 defaults

zlib 1.2.12 h7f8727e_2 defaults

zstd 1.5.2 ha4553b6_0 defaults

17

Appendix B. Python Script: iris.py

18

This is a test of using conda and ML libraries in general in PSF.

See https://machinelearningmastery.com/machine-learning-in-python-step-by-step/

import sys

print('Python: {}'.format(sys.version))

import scipy

print('scipy: {}'.format(scipy.__version__))

import numpy

print('numpy: {}'.format(numpy.__version__))

import matplotlib

print('matplotlib: {}'.format(matplotlib.__version__))

import pandas

print('pandas: {}'.format(pandas.__version__))

import sklearn

print('sklearn: {}'.format(sklearn.__version__))

Load required libraries

from pandas import read_csv

from pandas.plotting import scatter_matrix

from matplotlib import pyplot

from sklearn.model_selection import train_test_split

from sklearn.model_selection import cross_val_score

from sklearn.model_selection import StratifiedKFold

from sklearn.metrics import classification_report

from sklearn.metrics import confusion_matrix

from sklearn.metrics import accuracy_score

from sklearn.linear_model import LogisticRegression

from sklearn.tree import DecisionTreeClassifier

from sklearn.neighbors import KNeighborsClassifier

from sklearn.discriminant_analysis import LinearDiscriminantAnalysis

from sklearn.naive_bayes import GaussianNB

from sklearn.svm import SVC

Load dataset

names = ['sepal-length', 'sepal-width', 'petal-length', 'petal-width', 'class']

dataset = read_csv('/iris.csv', names=names)

Summarize the dataset

There should be 150 instances and 5 attributes

print(dataset.shape)

print(dataset.head(20))

print(dataset.describe())

Class distribution

print(dataset.groupby('class').size())

Split out validation dataset

array = dataset.values

X = array[:,0:4]

y = array[:,4]

X_train, X_validation, Y_train, Y_validation = train_test_split(X, y,

test_size=0.20, random_state=1)

models = []

models.append(('LR', LogisticRegression(solver='liblinear', multi_class='ovr')))

models.append(('LDA', LinearDiscriminantAnalysis()))

models.append(('KNN', KNeighborsClassifier()))

models.append(('CART', DecisionTreeClassifier()))

models.append(('NB', GaussianNB()))

models.append(('SVM', SVC(gamma='auto')))

Evaluate each model in turn

results = []

names = []

for name, model in models:

 kfold = StratifiedKFold(n_splits=10, random_state=1, shuffle=True)

 cv_results = cross_val_score(model, X_train, Y_train, cv=kfold,

scoring='accuracy')

 results.append(cv_results)

 names.append(name)

19

 print('%s: %f (%f)' % (name, cv_results.mean(), cv_results.std()))

Make predictions on validation dataset

model = SVC(gamma='auto')

model.fit(X_train, Y_train)

predictions = model.predict(X_validation)

Evaluate predictions

print(accuracy_score(Y_validation, predictions))

print(confusion_matrix(Y_validation, predictions))

print(classification_report(Y_validation, predictions))

20

Appendix C. Output of iris.py on Source Computer

21

Python: 3.10.4 (main, Mar 31 2022, 08:41:55) [GCC 7.5.0]

scipy: 1.7.3

numpy: 1.22.3

matplotlib: 3.5.2

pandas: 1.4.3

sklearn: 1.1.1

(150, 5)

 sepal-length sepal-width petal-length petal-width class

0 5.1 3.5 1.4 0.2 Iris-setosa

1 4.9 3.0 1.4 0.2 Iris-setosa

2 4.7 3.2 1.3 0.2 Iris-setosa

3 4.6 3.1 1.5 0.2 Iris-setosa

4 5.0 3.6 1.4 0.2 Iris-setosa

5 5.4 3.9 1.7 0.4 Iris-setosa

6 4.6 3.4 1.4 0.3 Iris-setosa

7 5.0 3.4 1.5 0.2 Iris-setosa

8 4.4 2.9 1.4 0.2 Iris-setosa

9 4.9 3.1 1.5 0.1 Iris-setosa

10 5.4 3.7 1.5 0.2 Iris-setosa

11 4.8 3.4 1.6 0.2 Iris-setosa

12 4.8 3.0 1.4 0.1 Iris-setosa

13 4.3 3.0 1.1 0.1 Iris-setosa

14 5.8 4.0 1.2 0.2 Iris-setosa

15 5.7 4.4 1.5 0.4 Iris-setosa

16 5.4 3.9 1.3 0.4 Iris-setosa

17 5.1 3.5 1.4 0.3 Iris-setosa

18 5.7 3.8 1.7 0.3 Iris-setosa

19 5.1 3.8 1.5 0.3 Iris-setosa

 sepal-length sepal-width petal-length petal-width

count 150.000000 150.000000 150.000000 150.000000

mean 5.843333 3.054000 3.758667 1.198667

std 0.828066 0.433594 1.764420 0.763161

min 4.300000 2.000000 1.000000 0.100000

25% 5.100000 2.800000 1.600000 0.300000

50% 5.800000 3.000000 4.350000 1.300000

75% 6.400000 3.300000 5.100000 1.800000

max 7.900000 4.400000 6.900000 2.500000

class

Iris-setosa 50

Iris-versicolor 50

Iris-virginica 50

dtype: int64

LR: 0.941667 (0.065085)

LDA: 0.975000 (0.038188)

KNN: 0.958333 (0.041667)

CART: 0.950000 (0.040825)

NB: 0.950000 (0.055277)

SVM: 0.983333 (0.033333)

0.9666666666666667

[[11 0 0]

 [0 12 1]

 [0 0 6]]

 precision recall f1-score support

 Iris-setosa 1.00 1.00 1.00 11

Iris-versicolor 1.00 0.92 0.96 13

 Iris-virginica 0.86 1.00 0.92 6

 accuracy 0.97 30

 macro avg 0.95 0.97 0.96 30

 weighted avg 0.97 0.97 0.97 30

22

Appendix D. Output of iris.py on Destination Computer

23

Starting container runscript...

Python: 3.10.4 (main, Mar 31 2022, 08:41:55) [GCC 7.5.0]

scipy: 1.7.3

numpy: 1.22.3

matplotlib: 3.5.2

pandas: 1.4.3

sklearn: 1.1.1

(150, 5)

 sepal-length sepal-width petal-length petal-width class

0 5.1 3.5 1.4 0.2 Iris-setosa

1 4.9 3.0 1.4 0.2 Iris-setosa

2 4.7 3.2 1.3 0.2 Iris-setosa

3 4.6 3.1 1.5 0.2 Iris-setosa

4 5.0 3.6 1.4 0.2 Iris-setosa

5 5.4 3.9 1.7 0.4 Iris-setosa

6 4.6 3.4 1.4 0.3 Iris-setosa

7 5.0 3.4 1.5 0.2 Iris-setosa

8 4.4 2.9 1.4 0.2 Iris-setosa

9 4.9 3.1 1.5 0.1 Iris-setosa

10 5.4 3.7 1.5 0.2 Iris-setosa

11 4.8 3.4 1.6 0.2 Iris-setosa

12 4.8 3.0 1.4 0.1 Iris-setosa

13 4.3 3.0 1.1 0.1 Iris-setosa

14 5.8 4.0 1.2 0.2 Iris-setosa

15 5.7 4.4 1.5 0.4 Iris-setosa

16 5.4 3.9 1.3 0.4 Iris-setosa

17 5.1 3.5 1.4 0.3 Iris-setosa

18 5.7 3.8 1.7 0.3 Iris-setosa

19 5.1 3.8 1.5 0.3 Iris-setosa

 sepal-length sepal-width petal-length petal-width

count 150.000000 150.000000 150.000000 150.000000

mean 5.843333 3.054000 3.758667 1.198667

std 0.828066 0.433594 1.764420 0.763161

min 4.300000 2.000000 1.000000 0.100000

25% 5.100000 2.800000 1.600000 0.300000

50% 5.800000 3.000000 4.350000 1.300000

75% 6.400000 3.300000 5.100000 1.800000

max 7.900000 4.400000 6.900000 2.500000

class

Iris-setosa 50

Iris-versicolor 50

Iris-virginica 50

dtype: int64

LR: 0.941667 (0.065085)

LDA: 0.975000 (0.038188)

KNN: 0.958333 (0.041667)

CART: 0.950000 (0.055277)

NB: 0.950000 (0.055277)

SVM: 0.983333 (0.033333)

0.9666666666666667

[[11 0 0]

 [0 12 1]

 [0 0 6]]

 precision recall f1-score support

 Iris-setosa 1.00 1.00 1.00 11

Iris-versicolor 1.00 0.92 0.96 13

 Iris-virginica 0.86 1.00 0.92 6

 accuracy 0.97 30

 macro avg 0.95 0.97 0.96 30

 weighted avg 0.97 0.97 0.97 30

24

Appendix E. Output of iris.py when Using Conda-Pack

25

Python: 3.8.13 (default, Mar 28 2022, 11:38:47)

[GCC 7.5.0]

scipy: 1.7.3

numpy: 1.21.5

matplotlib: 3.5.2

pandas: 1.4.4

sklearn: 1.1.1

(150, 5)

 sepal-length sepal-width petal-length petal-width class

0 5.1 3.5 1.4 0.2 Iris-setosa

1 4.9 3.0 1.4 0.2 Iris-setosa

2 4.7 3.2 1.3 0.2 Iris-setosa

3 4.6 3.1 1.5 0.2 Iris-setosa

4 5.0 3.6 1.4 0.2 Iris-setosa

5 5.4 3.9 1.7 0.4 Iris-setosa

6 4.6 3.4 1.4 0.3 Iris-setosa

7 5.0 3.4 1.5 0.2 Iris-setosa

8 4.4 2.9 1.4 0.2 Iris-setosa

9 4.9 3.1 1.5 0.1 Iris-setosa

10 5.4 3.7 1.5 0.2 Iris-setosa

11 4.8 3.4 1.6 0.2 Iris-setosa

12 4.8 3.0 1.4 0.1 Iris-setosa

13 4.3 3.0 1.1 0.1 Iris-setosa

14 5.8 4.0 1.2 0.2 Iris-setosa

15 5.7 4.4 1.5 0.4 Iris-setosa

16 5.4 3.9 1.3 0.4 Iris-setosa

17 5.1 3.5 1.4 0.3 Iris-setosa

18 5.7 3.8 1.7 0.3 Iris-setosa

19 5.1 3.8 1.5 0.3 Iris-setosa

 sepal-length sepal-width petal-length petal-width

count 150.000000 150.000000 150.000000 150.000000

mean 5.843333 3.054000 3.758667 1.198667

std 0.828066 0.433594 1.764420 0.763161

min 4.300000 2.000000 1.000000 0.100000

25% 5.100000 2.800000 1.600000 0.300000

50% 5.800000 3.000000 4.350000 1.300000

75% 6.400000 3.300000 5.100000 1.800000

max 7.900000 4.400000 6.900000 2.500000

class

Iris-setosa 50

Iris-versicolor 50

Iris-virginica 50

dtype: int64

LR: 0.941667 (0.065085)

LDA: 0.975000 (0.038188)

KNN: 0.958333 (0.041667)

CART: 0.941667 (0.038188)

NB: 0.950000 (0.055277)

SVM: 0.983333 (0.033333)

0.9666666666666667

[[11 0 0]

 [0 12 1]

 [0 0 6]]

 precision recall f1-score support

 Iris-setosa 1.00 1.00 1.00 11

Iris-versicolor 1.00 0.92 0.96 13

 Iris-virginica 0.86 1.00 0.92 6

 accuracy 0.97 30

 macro avg 0.95 0.97 0.96 30

 weighted avg 0.97 0.97 0.97 30

26

List of Symbols, Abbreviations, and Acronyms

ARL Army Research Laboratory

conda Anaconda

DEVCOM US Army Combat Capabilities Development Command

DNS Domain Name System

DOD Department of Defense

DSRC DOD Supercomputing Resource Center

HPC High Performance Computing

IP Internet Protocol

ML machine learning

OS operating system

PII personally identifiable information

PSF Persistent Services Framework

sif Singularity Image Format

SSH Secure Shell

VM virtual machine

YAML YAML Ain’t Markup Language

YML YAML file

27

 1 DEFENSE TECHNICAL

 (PDF) INFORMATION CTR

 DTIC OCA

 1 DEVCOM ARL

 (PDF) FCDD RLB CI

 TECH LIB

 3 DEVCOM ARL

 (PDF) FCDD RLA DB

 D SHIRES

 M FRAUENHOFFER

 J VINES

